the-events-calendar
domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init
action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/microbiology-fpu/www/wp/wp-includes/functions.php on line 6114updraftplus
domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init
action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/microbiology-fpu/www/wp/wp-includes/functions.php on line 6114F. Hasebe, K. Adachi, C. Maruyama, Y. Hamano<\/p>\n
<\/p>\n
Appl. Environ. Microbiol.,<\/em><\/strong> In press (2024)<\/p>\n<\/div>\n H. Sakae, Y. Takeuchi, C. Maruyama, Y. Hamano, H. Nagatani<\/p>\n <\/p>\n J. ELECTROANAL. CHEM.,<\/em><\/strong> Volume 970, 118545 (2024)<\/p>\n<\/div>\n K. Kaneda, Y. Takeuchi, K. Yamanaka, F. Hasebe, C. Maruyama & Y. Hamano,<\/p>\n <\/p>\n J. Biosci. Bioeng.,<\/em><\/strong> 138, 249-253 (2024)<\/p>\n<\/div>\n H. Katano, M. Maruyama, K. Uematsu, C. Maruyama & Y. Hamano,<\/p>\n <\/p>\n Anal. Sci.,<\/em><\/strong> 40(1), 47-52 (2024)<\/p>\n<\/div>\n W. Xiao, T. Tsunoda, C. Maruyama, Y. Hamano, Y. Ogasawara & T. Dairi,<\/p>\n <\/p>\n Biosci. Biotechnol. Biochem.,<\/em><\/strong> 87(11), 1316-1322 (2023)<\/p>\n<\/div>\n C. Maruyama & Y. Hamano,<\/p>\n <\/p>\n Methods Mol. Biol.,<\/em><\/strong> 2670, 3-16 (2023)<\/p>\n<\/div>\n H. Sakae, Y. Takeuchi, C. Maruyama, Y. Hamano & H. Nagatani,<\/p>\n <\/p>\n Electrochimica Acta,<\/em><\/strong> Available online 22 June, 142769 (2023)<\/p>\n<\/div>\n F. Hasebe, K. Adachi, K. Yamanaka, T. Oikawa, C. Maruyama & Y. Hamano,<\/p>\n <\/p>\n J. Antibiot.,<\/em><\/strong> 76(9), 522-531 (2023)<\/p>\n<\/div>\n YL. Wang, CY. Chang, NS. Hsu, IW. Lo, KH. Lin, CL. Chen, CF. Chang, ZC. Wang, Y. Ogasawara, T. Dairi, C. Maruyama, Y. Hamano, TL. Li,<\/p>\n <\/p>\n Nature Communications.,<\/em><\/strong> 14, 2528 (2023)<\/p>\n<\/div>\n S. Kurosawa, H. Okamura, A. Yoshida, T. Tomita, Y. Sone, F. Hasebe, T. Shinada, H. Takikawa, S. Kosono, M. Nishiyama,<\/p>\n ACS Chem. Biol.,<\/em><\/strong> 18(2), 385-395 (2023)<\/p>\n<\/div>\n F. Kudo, A. Minato, S. Sato, N. Nagano, C. Maruyama, Y. Hamano, J. Hashimoto, I. Kozone, K. Shin-ya, and T. Eguchi,<\/p>\n Org. Lett.,<\/em><\/strong> 24(49), 8975-8979 (2022)<\/p>\n<\/div>\n T. Motoyama, Y. Yamamoto, C. Ishida, F. Hasebe, Y. Kawamura, Y. Shigeta, S. Ito, and S. Nakano,<\/p>\n ACS Omega, <\/em><\/strong>7(48), 44407-44419 (2022)<\/p>\n<\/div>\n Y. Takeuchi, K. Ushimaru, K. Kaneda, C. Maruyama, T. Ito, K. Yamanaka, Y. Ogasawara, H. Katano, Y. Kato, T. Dairi, Y. Hamano,<\/p>\n Commun. Biol.,<\/em><\/strong> 5, 1132 (2022)<\/p>\n<\/div>\n T. Ito, K. H. Nguyen, C. Maruyama, Y. Hamano, S. Murakami, S. W. Schaffer,<\/p>\n Adv. Exp. Med. Biol.,<\/em><\/strong> 1370, 137-142 (2022)<\/p>\n<\/div>\n S. Kurosawa, F. Hasebe, H. Okamura, A. Yoshida, K. Matsuda, Y. Sone, T. Tomita, T. Shinada, H. Takikawa, T. Kuzuyama, S. Kosono, M. Nishiyama,<\/p>\n J. Am. Chem. Soc<\/i>.,<\/em><\/strong> 144, 16164\u221216170 (2022)<\/p>\n<\/div>\n T. Okamoto, K. Yamanaka, Y. Hamano, S. Nagano, T. Hino,<\/p>\n Biochem. and Biophys. Res. Commun.,<\/em><\/strong> 596, 43-48 (2022)<\/p>\n<\/div>\n K. Yamanaka, R. Ozaki, Y. Hamano, T. Oikawa,<\/p>\n Front Microbiol.,<\/em><\/strong> 12, 686023-686023, (2021)<\/p>\n<\/div>\n F. Hasebe,<\/p>\n Biosci. Biotechnol. Biochem.,<\/em><\/strong>\u00a085, 351-358 (2021)<\/p>\n<\/div>\n 94. Ion transfer mechanism of fluorescence-labeled octa-arginine on model biomembrane surfaces.<\/h5>\n
93. Cell-penetrating activity of a short-chain \u03b5-poly-L-\u03b1- lysine.<\/h5>\n
92. Separation of an \u03b5-poly-L-lysine derivative by solvent extraction under a controlled interfacial potential difference.<\/h5>\n
91. Peptide epimerase-dehydratase complex responsible for biosynthesis of the linaridin class ribosomal peptides.<\/h5>\n
90. The Assembly-Line Enzymology of Nonribosomal Peptide Biosynthesis.<\/h5>\n
89. Phase transfer mechanisms of fluorophore-labeled cell-penetrating peptide \u03b5-poly-L-\u03b1-lysine at liquid|liquid interfaces.<\/h5>\n
88. Constitutive and high gene expression in the diaminopimelate pathway accelerates \u03b5-poly-L-lysine production in Streptomyces albulus.<\/h5>\n
87. N-Formimidoylation\/-iminoacetylation modification in aminoglycosides requires FAD-dependent and ligand-protein NOS bridge dual chemistry.<\/h5>\n
86. Mechanisms of Sugar Aminotransferase-like Enzymes to Synthesize Stereoisomers of Non-proteinogenic Amino Acids in Natural Product Biosynthesis.<\/h5>\n
85. Mechanism of S-Adenosyl-l-methionine C-Methylation by Cobalamin-dependent Radical S-Adenosyl-l-methionine Methylase in 1-Amino-2-methylcyclopropanecarboxylic Acid Biosynthesis.<\/h5>\n
84. Reaction Mechanism of Ancestral l-Lys \u03b1-Oxidase from Caulobacter Species Studied by Biochemical, Structural, and Computational Analysis.<\/h5>\n
83. First direct evidence for direct cell-membrane penetrations of polycationic homopoly(amino acid)s produced by bacteria.<\/h5>\n
82. Bioavailability of Tauropine After Oral Ingestion in Mouse.<\/h5>\n
81. Molecular Basis for Enzymatic Aziridine Formation via Sulfate Elimination.<\/h5>\n
80. Crystal structure of the adenylation domain from an \u03b5-poly-l-lysine synthetase provides molecular mechanism for substrate specificity.<\/h5>\n
79. Molecular and Mechanistic Characterization of PddB, the First PLP-Independent 2,4-Diaminobutyric Acid Racemase Discovered in an Actinobacterial D-Amino Acid Homopolymer Biosynthesis.<\/h5>\n
78. MetW regulates the enzymatic activity of MetX in Pseudomonas.<\/h5>\n